Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
1.
Acad Radiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38664146

RESUMO

RATIONALE AND OBJECTIVES: Investigate the feasibility of using deep learning-based accelerated 3D T1-weighted volumetric isotropic turbo spin-echo acquisition (VISTA) for vessel wall magnetic resonance imaging (VW-MRI), compared to traditional Compressed SENSE and optimize acceleration factor (AF) to obtain high-quality clinical images. METHODS: 40 patients with atherosclerotic plaques in the intracranial or carotid artery were prospectively enrolled in our study from October 1, 2022 to October 31, 2023 underwent high-resolution vessel wall imaging on a 3.0 T MR system using variable Compressed SENSE (CS) AFs and reconstructed by an optimized artificial intelligence constrained Compressed SENSE (CS-AI). Images were reconstructed through both traditional CS and optimized CS-AI. Two radiologists qualitatively assessed the image quality scores of CS and CS-AI across different segments and quantitatively evaluated SNR (signal-to-noise ratio) and CNR (contrast-to-noise ratio) metrics. Paired t-tests, ANOVA, and Friedman tests analyzed image quality metrics. Written informed consent was obtained from all patients in this study. RESULTS: CS-AI groups demonstrated good image quality scores compared to reference scans until AF up to 12 (P < 0.05). The CS-AI 10 protocol provided the best images in the lumen of both normal and lesion sites (P < 0.05). The plaque SNR was significantly higher in CS-AI groups compared to CS groups until the AF increased to 12 (P < 0.05). CS-AI protocols had higher CNR compared to CS with whichever AF on both pre-and post-contrast T1WI (P < 0.05), The CNR was highest in the CS-AI 10 protocol on pre-contrast T1WI and in CS-AI 12 on post-contrast T1WI (P < 0.05). CONCLUSION: The study demonstrated the feasibility of using CS-AI technology to diagnose arteriosclerotic vascular disease with 3D T1 VISTA sequences. The image quality and diagnostic efficiency of CS-AI images were comparable or better than traditional CS images. Higher AFs are feasible and have potential for use in VW-MRI. The determination of standardized AFs for clinical scanning protocol is expected to help for empirical evaluation of new imaging technology.

2.
Lipids Health Dis ; 23(1): 115, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643148

RESUMO

BACKGROUND: The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and triglyceride-glucose (TyG) index are novel indexes for insulin resistance (IR). We aimed to evaluate associations of TG/HDL-C and TyG with arterial stiffness risk. METHODS: We enrolled 1979 participants from the Rural Chinese Cohort Study, examining arterial stiffness by brachial-ankle pulse wave velocity (baPWV). Logistic and linear regression models were employed to calculate effect estimates. For meta-analysis, we searched relevant articles from PubMed, Embase and Web of Science up to August 26, 2023. The fixed-effects or random-effects models were used to calculate the pooled estimates. We evaluated dose-response associations using restricted cubic splines. RESULTS: For cross-sectional studies, the adjusted ORs (95%CIs) for arterial stiffness were 1.12 (1.01-1.23) and 1.78 (1.38-2.30) for per 1 unit increment in TG/HDL-C and TyG. In the meta-analysis, the pooled ORs (95% CIs) were 1.26 (1.14-1.39) and 1.57 (1.36-1.82) for per 1 unit increment of TG/HDL-C and TyG. Additionally, both TG/HDL-C and TyG were positively related to PWV, with ß of 0.09 (95% CI 0.04-0.14) and 0.57 (95% CI 0.35-0.78) m/s. We also found linear associations of TG/HDL-C and TyG with arterial stiffness risk. CONCLUSIONS: High TG/HDL-C and TyG were related to increased arterial stiffness risk, indicating TG/HDL-C and TyG may be convincing predictors of arterial stiffness.


Assuntos
Resistência à Insulina , Rigidez Vascular , Humanos , Glucose , Triglicerídeos , Estudos de Coortes , Índice Tornozelo-Braço , Rigidez Vascular/fisiologia , HDL-Colesterol , Estudos Transversais , Análise de Onda de Pulso , Resistência à Insulina/genética , Glicemia , Biomarcadores
3.
J Colloid Interface Sci ; 667: 414-424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640660

RESUMO

The electrolysis of seawater for hydrogen production holds promise as a sustainable technology for energy generation. Developing water-splitting catalysts with low overpotential and stable operation in seawater is essential. In this study, we employed a hydrothermal method to synthesize NiMoWOX microrods (NiMoWOX@NF). Subsequently, an annealing process yielded a composite N-doped carbon-coated Ni3N/MoO2/WO2 nanorods (NC@Ni3N/MoO2/WO2@NF), preserving the ultrahigh-specific surface area of the original structure. A two-electrode electrolytic cell was assembled using NC@Ni3N/MoO2/WO2@NF as the cathode and NiMoWOX@NF as the anode, demonstrating exceptional performance in seawater splitting. The cell operated at a voltage of 1.51 V with a current density of 100 mA·cm-2 in an alkaline seawater solution. Furthermore, the NC@Ni3N/MoO2/WO2@NF || NiMoWOX@NF electrolytic cell exhibited remarkable stability, running continuously for over 120 h at a current of 1100 mA·cm-2 without any observable delay. These experimental results are corroborated by density functional theory calculations. The NC@Ni3N/MoO2/WO2@NF || NiMoWOX@NF electrolyzer emerges as a promising option for industrial-scale hydrogen production through seawater electrolysis.

4.
Front Neurol ; 15: 1286079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633532

RESUMO

Introduction: Tirofiban is a non-peptide selective glycoprotein IIb/IIIa receptor inhibitor with a short half-life. The research assesses the efficacy and safety of continuous intravenous tirofiban in patients with acute ischemic stroke (AIS) undergoing endovascular therapy (ET). Methods: A systematic search of Pubmed, Embase, Web of Science, and Cochrane Library databases is conducted from inception until January 26, 2024. Eligible studies are included based on predefined selection criteria. Efficacy outcomes (favorable functional outcome and excellent functional outcome) and safety outcomes (symptomatic intracranial hemorrhage [sICH], any intracranial hemorrhage [ICH], and 90-day mortality) are calculated using odds ratios (OR) and 95% confidence intervals (CI). Results: A total of 4,329 patients from 15 studies are included in the analysis. The results indicate a significant trend toward favorable functional outcomes in the tirofiban group (OR, 1.24; 95% CI, 1.09-1.42; p = 0.001). In terms of safety outcomes, tirofiban does not increase the risk of sICH (OR, 0.90; 95% CI, 0.71-1.13; p = 0.35) or any ICH (OR, 0.97; 95% CI, 0.70-1.34; p = 0.85), but it significantly decreases 90-day mortality (OR, 0.75; 95% CI, 0.64-0.88; p = 0.0006). A subgroup analysis suggests that continuous intravenous tirofiban demonstrates better efficacy (OR, 1.24; 95% CI, 1.09-1.42; p = 0.001) for patients with AIS undergoing rescue ET with even better results when used in combination with intra-arterial and intravenous administration (OR, 1.25; 95% CI, 1.07-1.451; p = 0.005). Conclusion: Continuous intravenous tirofiban is effective and safe for patients with AIS undergoing rescue ET, particularly when combined with intra-arterial tirofiban. Systematic review registration: PROSPERO, identifier CRD42023385695.

5.
Front Neurol ; 15: 1349710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562424

RESUMO

Background: An association between prognosis and high sodium levels in Traumatic Brain Injury (TBI) patients in Intensive Care Units (ICUs) has been noted, but limited research exists on the ideal sodium level in these patients or the impact on early mortality, using the MIMIC-IV database. Methods: A retrospective survey was conducted on TBI patients from the MIMIC-IV database. Patients were divided into two categories based on their highest serum sodium level within 24 h of admission exceeding 145 mmol/L: those with hypernatremia, and those with moderate-to-low sodium levels. Collected covariates encompasses demographic, clinical, laboratory, and intervention variables. A multivariate logistic regression model was implemented to forecast in-hospital mortality. Results: The study included 1749 TBI patients, with 209 (11.5%) experiencing in-hospital deaths. A non-linear test exposed an L-shaped correlation between sodium level and in-hospital mortality, with mortality rates increasing after a turning point at 144.1 mmol/L. Compared to the moderate-to-low group's 9.3% mortality rate, the hypernatremia group had a significantly higher mortality rate of 25.3% (crude odds ratio = 3.32, 95% confidence interval: 2.37 ~ 4.64, p < 0.001). After adjusting for all covariates, the hypernatremia group continued to show a significant correlation with higher mortality risk (adjusted odds ratio = 2.19, 95% confidence interval: 1.38 ~ 3.47, p = 0.001). This trend remained consistent regardless of the analyses stratification. Conclusion: The study reveals an L-shaped relationship between sodium levels and in-hospital deaths, with a pivotal point at 144.1 mmol/L. TBI patients displaying hypernatremia were independently linked to higher in-hospital mortality, underlining the need for further studies into targeted management of sodium levels in these patients.

6.
J Cancer Res Clin Oncol ; 150(4): 171, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558328

RESUMO

BACKGROUND: Tryptophan (Trp) is an essential amino acid. Increasing evidence suggests that tryptophan metabolism plays a complex role in immune escape from Lung adenocarcinoma (LUAD). However, the role of long non-coding RNAs (lncRNAs) in tryptophan metabolism remains to be investigated. METHODS: This study uses The Cancer Genome Atlas (TCGA)-LUAD dataset as the training cohort, and several datasets from the Gene Expression Omnibus (GEO) database are merged into the validation cohort. Genes related to tryptophan metabolism were identified from the Molecular Signatures Database (MSigDB) database and further screened for lncRNAs with Trp-related expression. Subsequently, a prognostic signature of lncRNAs related to tryptophan metabolism was constructed using Cox regression analysis, (Least absolute shrinkage and selection operator regression) and LASSO analysis. The predictive performance of this risk score was validated by Kaplan-Meier (KM) survival analysis, (receiver operating characteristic) ROC curves, and nomograms. We also explored the differences in immune cell infiltration, immune cell function, tumor mutational load (TMB), tumor immune dysfunction and exclusion (TIDE), and anticancer drug sensitivity between high- and low-risk groups. Finally, we used real-time fluorescence quantitative PCR, CCK-8, colony formation, wound healing, transwell, flow cytometry, and nude mouse xenotransplantation models to elucidate the role of ZNF8-ERVK3-1 in LUAD. RESULTS: We constructed 16 tryptophan metabolism-associated lncRNA prognostic models in LUAD patients. The risk score could be used as an independent prognostic indicator for the prognosis of LUAD patients. Kaplan-Meier survival analysis, ROC curves, and risk maps validated the prognostic value of the risk score. The high-risk and low-risk groups showed significant differences in phenotypes, such as the percentage of immune cell infiltration, immune cell function, gene mutation frequency, and anticancer drug sensitivity. In addition, patients with high-risk scores had higher TMB and TIDE scores compared to patients with low-risk scores. Finally, we found that ZNF8-ERVK3-1 was highly expressed in LUAD tissues and cell lines. A series of in vitro experiments showed that knockdown of ZNF8-ERVK3-1 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. In vivo experiments with xenografts have shown that knocking down ZNF8-ERVK3-1 can significantly inhibit tumor size and tumor proliferation. CONCLUSION: We constructed a new prognostic model for tryptophan metabolism-related lncRNA. The risk score was closely associated with common clinical features such as immune cell infiltration, immune-related function, TMB, and anticancer drug sensitivity. Knockdown of ZNF8-ERVK3-1 inhibited LUAD cell proliferation, migration, invasion, and G0/G1 phase blockade and promoted apoptosis.


Assuntos
Adenocarcinoma , Antineoplásicos , RNA Longo não Codificante , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , Triptofano/genética , Prognóstico , Imunidade , Fatores de Transcrição Kruppel-Like
7.
Food Funct ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568797

RESUMO

Background: Currently, the reported links between olive oil intake and cardiovascular disease (CVD), cancer morbidity and mortality, and all-cause mortality are inconsistent. The aim of this meta-analysis is to study the reported correlations of olive oil intake with CVD, coronary heart disease (CHD), stroke and cancer incidence and mortality, and all-cause mortality. Methods: PubMed, Embase, and Web of Science were searched until March 7, 2024. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were estimated by the random-effects model. Nonlinear dose-response relationships were modeled with restricted cubic splines. This study has been registered at PROSPERO (CRD42023419001). Results: Overall, 30 articles covering 2 710 351 participants were identified. Higher olive oil intake was linked with a reduced risk of CVD incidence (RR: 0.85; 95% CI: 0.77, 0.93), CHD incidence (RR: 0.85; 95% CI: 0.72, 0.99), CVD mortality (RR: 0.77; 95% CI: 0.67, 0.88), and all-cause mortality (RR: 0.85; 95% CI: 0.81, 0.89). For a 10 g d-1 increment of olive oil intake, the risk of CVD incidence, stroke incidence, CVD mortality, and all-cause mortality decreased by 7%, 5%, 8%, and 8%, respectively. No association was found between olive oil intake and cancer incidence and mortality. Nonlinear relationships between olive oil intake and CVD and all-cause mortality were observed, with a reduced risk from intakes ranging from 0 to 18 g d-1 and 0 to 22 g d-1, respectively. Conclusion: Our study found that high olive oil intake was related to a lower risk of CVD and CHD incidence and CVD mortality and all-cause mortality.

8.
J Med Chem ; 67(8): 6810-6821, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38613772

RESUMO

Anti-PD-L1 immunotherapy, a new lung cancer treatment, is limited to a few patients due to low PD-L1 expression and tumor immunosuppression. To address these challenges, the upregulation of PD-L1 has the potential to elevate the response rate and efficiency of anti-PD-L1 and alleviate the immunosuppression of the tumor microenvironment. Herein, we developed a novel usnic acid-derived Iridium(III) complex, Ir-UA, that boosts PD-L1 expression and converts "cold tumors" to "hot". Subsequently, we administered Ir-UA combined with anti-PD-L1 in mice, which effectively inhibited tumor growth and promoted CD4+ and CD8+ T cell infiltration. To our knowledge, Ir-UA is the first iridium-based complex to stimulate the expression of PD-L1 by explicitly regulating its transcription factors, which not only provides a promising platform for immune checkpoint blockade but, more importantly, provides an effective treatment strategy for patients with low PD-L1 expression.


Assuntos
Antígeno B7-H1 , Imunoterapia , Irídio , Animais , Irídio/química , Irídio/farmacologia , Antígeno B7-H1/metabolismo , Camundongos , Humanos , Imunoterapia/métodos , Fator 3 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química
9.
Ultrason Sonochem ; 105: 106864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581796

RESUMO

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Assuntos
Inulina , Proteínas de Soja , Inulina/química , Proteínas de Soja/química , Ondas Ultrassônicas , Soja/química , Sonicação
10.
Bioorg Chem ; 147: 107325, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583247

RESUMO

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.

11.
Curr Pharm Des ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38616753

RESUMO

BACKGROUND: Acute Respiratory Distress Syndrome (ARDS) is an acute life-threatening disease, and luteolin has the potential to become a therapeutic agent for ARDS. However, its mechanism of action has not yet been clarified. OBJECTIVE: The present study explored the potential effects and mechanisms of luteolin in the treatment of ARDS through network pharmacology analysis and verified them through biological experiments. METHODS: The potential targets of luteolin and ARDS were obtained from online databases. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the underlying molecular mechanisms and to identify hub targets. Molecular docking was used to verify the relationship between luteolin and target proteins. Finally, the effects of luteolin on key signaling pathways and biological processes were verified by in vitro and in vivo experiments. RESULTS: A total of 146 luteolin- and 496 ARDS-related targets were extracted from public databases. The network pharmacological analysis suggested that luteolin could inhibit ARDS through the following potential therapeutic targets: AKT1, RELA, and NFKBIA. Inflammatory and oxidative stress responses were the main biological processes involved, with the AKT/NF-κB signaling pathway being the key signaling pathway targeted by luteolin for the treatment of ARDS. Molecular docking analysis indicated that luteolin had a good binding affinity to AKT1, RELA, and NFKBIA. The in vitro and in vivo experiments revealed that luteolin could regulate the inflammatory response and oxidative stress in the treatment of ARDS by inhibiting the AKT/NF- κB signaling pathway. CONCLUSION: Luteolin could reduce the production of reactive oxygen species and inflammatory factors by inhibiting the AKT/NF-κB signaling pathway, thus reducing apoptosis and attenuating ARDS.

12.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611845

RESUMO

In this paper, berberine hydrochloride-loaded liposomes-in-gel were designed and developed to investigate their antioxidant properties and therapeutic effects on the eczema model of the mouse. Berberine hydrochloride-liposomes (BBH-L) as the nanoparticles were prepared by the thin-film hydration method and then dispersed BBH-L evenly in the gel matrix to prepare the berberine hydrochloride liposomes-gel (BBH-L-Gel) by the natural swelling method. Their antioxidant capacity was investigated by the free radical scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2 and the inhibition of lipid peroxides malondialdehyde (MDA). An eczema model was established, and the efficacy of the eczema treatment was preliminarily evaluated using ear swelling, the spleen index, and pathological sections as indicators. The results indicate that the entrapment efficiency of BBH-L prepared by the thin-film hydration method was 78.56% ± 0.7%, with a particle size of 155.4 ± 9.3 nm. For BBH-L-Gel, the viscosity and pH were 18.16 ± 6.34 m Pas and 7.32 ± 0.08, respectively. The cumulative release in the unit area of the in vitro transdermal study was 85.01 ± 4.53 µg/cm2. BBH-L-Gel had a good scavenging capacity on DPPH and H2O2, and it could effectively inhibit the production of hepatic lipid peroxides MDA in the concentration range of 0.4-2.0 mg/mL. The topical application of BBH-L-Gel could effectively alleviate eczema symptoms and reduce oxidative stress injury in mice. This study demonstrates that BBH-L-Gel has good skin permeability, excellent sustained release, and antioxidant capabilities. They can effectively alleviate the itching, inflammation, and allergic symptoms caused by eczema, providing a new strategy for clinical applications in eczema treatment.


Assuntos
Berberina , Eczema , Animais , Camundongos , Antioxidantes/farmacologia , Berberina/farmacologia , Lipossomos , Peróxido de Hidrogênio , Peróxidos Lipídicos
13.
Heliyon ; 10(5): e27270, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463766

RESUMO

The genus Bifidobacterium widely exists in human gut and has been increasingly used as the adjuvant probiotics for the prevention and treatment of diseases. However, the functional differences of Bifidobacterium genomes from different regions of the world remain unclear. We here describe an extensive study on the genomic characteristics and function annotations of 1512 genomes (clustered to 849 non-redundant genomes) of Bifidobacterium cultured from human gut. The distribution of some carbohydrate-active enzymes varied among different Bifidobacterium species and continents. More than 36% of the genomes of B. pseudocatenulatum harbored biosynthetic gene clusters of lanthipeptide-class-iv. 99.76% of the cultivated genomes of Bifidobacterium harbored genes of bile salt hydrolase. Most genomes of B. adolescentis, and all genomes of B. dentium harbored genes involved in gamma-aminobutyric acid synthesis. B. longum subsp. infantis were characterized harboring most genes related to human milk oligosaccharide utilization. Significant differences between the distribution of antibiotic resistance genes among different species and continents revealed the importance to use antibiotics precisely in the clinical treatment. Phages infecting Bifidobacterium and horizontal gene transfers occurring in genomes of Bifidobacterium were dependent on species and region sources, and might help Bifidobacterium adapt to the environment. In addition, the distribution of Bifidobacterium in human gut was found varied from different regions of the world. This study represents a comprehensive view of characteristics and functions of genomes of cultivated Bifidobacterium from human gut, and enables clinical advances in the future.

14.
World J Emerg Med ; 15(2): 111-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476533

RESUMO

BACKGROUND: Sepsis-related acute respiratory distress syndrome (ARDS) has a high mortality rate, and no effective treatment is available currently. Quercetin is a natural plant product with many pharmacological activities, such as antioxidative, anti-apoptotic, and anti-inflammatory effects. This study aimed to elucidate the protective mechanism of quercetin against sepsis-related ARDS. METHODS: In this study, network pharmacology and in vitro experiments were used to investigate the underlying mechanisms of quercetin against sepsis-related ARDS. Core targets and signaling pathways of quercetin against sepsis-related ARDS were screened and were verified by in vitro experiments. RESULTS: A total of 4,230 targets of quercetin, 360 disease targets of sepsis-related ARDS, and 211 intersection targets were obtained via database screening. Among the 211 intersection targets, interleukin-6 (IL-6), tumor necrosis factor (TNF), albumin (ALB), AKT serine/threonine kinase 1 (AKT1), and interleukin-1ß (IL-1ß) were identified as the core targets. A Gene Ontology (GO) enrichment analysis revealed 894 genes involved in the inflammatory response, apoptosis regulation, and response to hypoxia. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified 106 pathways. After eliminating and generalizing, the hypoxia-inducible factor-1 (HIF-1), TNF, nuclear factor-κB (NF-κB), and nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathways were identified. Molecular docking revealed that quercetin had good binding activity with the core targets. Moreover, quercetin blocked the HIF-1, TNF, NF-κB, and NOD-like receptor signaling pathways in lipopolysaccharide (LPS)-induced murine alveolar macrophage (MH-S) cells. It also suppressed the inflammatory response, oxidative reactions, and cell apoptosis. CONCLUSION: Quercetin ameliorates sepsis-related ARDS by binding to its core targets and blocking the HIF-1, TNF, NF-κB, and NOD-like receptor signaling pathways to reduce inflammation, cell apoptosis, and oxidative stress.

15.
Chin Med ; 19(1): 47, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481256

RESUMO

As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.

16.
Water Res ; 255: 121471, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503183

RESUMO

Global warming and eutrophication are known to increase the prevalence of cyanobacterial blooms, posing a severe threat to the ecological stability and sustainability of water bodies. The long-term (over an annual time frame) effect of UV radiation on cyanobacterial blooms in lakes are rarely discussed though the substantial effects of high-intensity UV radiation on the growth inhibition of marine phytoplankton were studied. Here, we employed the datasets on surface solar UV radiation, nitrogen and phosphorus concentrations, and the annual scales and frequencies of cyanobacterial blooms in lakes across long-term spatial scales to probe the relationship of UV radiation with cyanobacterial blooms. The results indicated that enhanced solar UV radiation may unintentionally stimulate cyanobacterial growth and favor the expansions of cyanobacterial blooms in lakes around the world. The fluctuating UV radiation significantly affects the annual scales of cyanobacterial blooms in both eutrophic and oligotrophic lakes. Solar UV radiation enhances the positive impact of rising phosphorus levels on cyanobacterial blooms because UV radiation prompts the synthesis of polyphosphate in cyanobacteria cells, which helps cyanobacteria to alleviate the stress of UV light. The scales of cyanobacterial blooms are significantly impacted by solar UV radiation intensities as opposed to the annual frequency of cyanobacterial blooms. Furthermore, solar UV radiation fluctuation with a 9-year period over a 14-year main cycles significantly affects the periodicities of cyanobacterial blooms in global lakes, which provides a basis for predicting the peak value of the scales of cyanobacterial blooms in lakes. These findings opened up new avenues of inquiry into the mechanism and management strategies of cyanobacterial blooms in lakes worldwide.

17.
AJNR Am J Neuroradiol ; 45(4): 444-452, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485196

RESUMO

BACKGROUND AND PURPOSE: Accelerating the image acquisition speed of MR imaging without compromising the image quality is challenging. This study aimed to evaluate the feasibility of contrast-enhanced (CE) 3D T1WI and CE 3D-FLAIR sequences reconstructed with compressed sensitivity encoding artificial intelligence (CS-AI) for detecting brain metastases (BM) and explore the optimal acceleration factor (AF) for clinical BM imaging. MATERIALS AND METHODS: Fifty-one patients with cancer with suspected BM were included. Fifty participants underwent different customized CE 3D-T1WI or CE 3D-FLAIR sequence scans. Compressed SENSE encoding acceleration 6 (CS6), a commercially available standard sequence, was used as the reference standard. Quantitative and qualitative methods were used to evaluate image quality. The SNR and contrast-to-noise ratio (CNR) were calculated, and qualitative evaluations were independently conducted by 2 neuroradiologists. After exploring the optimal AF, sample images were obtained from 1 patient by using both optimized sequences. RESULTS: Quantitatively, the CNR of the CS-AI protocol for CE 3D-T1WI and CE 3D-FLAIR sequences was superior to that of the CS protocol under the same AF (P < .05). Compared with reference CS6, the CS-AI groups had higher CNR values (all P < .05), with the CS-AI10 scan having the highest value. The SNR of the CS-AI group was better than that of the reference for both CE 3D-T1WI and CE 3D-FLAIR sequences (all P < .05). Qualitatively, the CS-AI protocol produced higher image quality scores than did the CS protocol with the same AF (all P < .05). In contrast to the reference CS6, the CS-AI group showed good image quality scores until an AF of up to 10 (all P < .05). The CS-AI10 scan provided the optimal images, improving the delineation of normal gray-white matter boundaries and lesion areas (P < .05). Compared with the reference, CS-AI10 showed reductions in scan time of 39.25% and 39.93% for CE 3D-T1WI and CE 3D-FLAIR sequences, respectively. CONCLUSIONS: CE 3D-T1WI and CE 3D-FLAIR sequences reconstructed with CS-AI for the detection of BM may provide a more effective alternative reconstruction approach than CS. CS-AI10 is suitable for clinical applications, providing optimal image quality and a shortened scan time.


Assuntos
Neoplasias Encefálicas , Substância Branca , Humanos , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta , Imageamento Tridimensional
18.
Neurosci Biobehav Rev ; 160: 105607, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428473

RESUMO

Risk-taking is a common, complex, and multidimensional behavior construct that has significant implications for human health and well-being. Previous research has identified the neural mechanisms underlying risk-taking behavior in both adolescents and adults, yet the differences between adolescents' and adults' risk-taking in the brain remain elusive. This study firstly employs a comprehensive meta-analysis approach that includes 73 adult and 20 adolescent whole-brain experiments, incorporating observations from 1986 adults and 789 adolescents obtained from online databases, including Web of Science, PubMed, ScienceDirect, Google Scholar and Neurosynth. It then combines functional decoding methods to identify common and distinct brain regions and corresponding psychological processes associated with risk-taking behavior in these two cohorts. The results indicated that the neural bases underlying risk-taking behavior in both age groups are situated within the cognitive control, reward, and sensory networks. Subsequent contrast analysis revealed that adolescents and adults risk-taking engaged frontal pole within the fronto-parietal control network (FPN), but the former recruited more ventrolateral area and the latter recruited more dorsolateral area. Moreover, adolescents' risk-taking evoked brain area activity within the ventral attention network (VAN) and the default mode network (DMN) compared with adults, consistent with the functional decoding analyses. These findings provide new insights into the similarities and disparities of risk-taking neural substrates underlying different age cohorts, supporting future neuroimaging research on the dynamic changes of risk-taking.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Humanos , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lobo Frontal , Mapeamento Encefálico , Neuroimagem , Assunção de Riscos
19.
Exp Ther Med ; 27(5): 196, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544556

RESUMO

Elastin expression in the conjoint facial sheath (CFS) of patients of different ages with severe ptosis has been extensively studied, but its expression in the CFS of pediatric patients with severe ptosis with different muscle strengths remains poorly understood. The aim of the present study was to investigate the expression of elastin in the CFS and levator palpebrae superioris muscle (LM) of children with severe congenital ptosis with different LM strengths. In total, 20 pediatric patients with unilateral severe congenital ptosis (20 eyes) were included, who underwent CFS + LM complex suspension surgery from June 2020 to February 2022. Among these patients, the LM strength was 0-1 mm in 10 patients and 2-3 mm in the other 10 patients. Excess CFS and LM tissue samples were obtained from the patients during surgery, before the protein expression levels of elastin in the specimens were measured by western blotting. During the 6-month postoperative follow-up period, the good correction rate, the degree of incomplete eyelid closure and the incidence of complications were observed. Western blotting results showed that, compared with that in the 0-1 mm group, elastin expression was not significantly different in the CFS, whereas it was significantly increased (P=0.021) in the LM of the 2-3 mm group. In addition, elastin expression in the CFS was markedly higher compared with that in the LM in both groups (in the 0-1 mm group, P=0.005; in the 2-3 mm group, P=0.009). Additionally, the curative effect evaluation revealed that the good correction rates in the 0-1 and 2-3 mm groups were 90 and 100%, respectively. In total, 3 patients experienced conjunctival prolapse during the follow-up period, including 2 patients in the 0-1 mm group and 1 patient in the 2-3 mm group, but there were no other complications. To conclude, elastin expression in the CFS was found to be higher compared with that in the LM of children with severe congenital ptosis. Although elastin expression in the LM was positively associated with LM strength, its expression in the CFS displayed no clear association with LM function. Therefore, these observations suggested that CFS + LM complex suspension surgery is viable to correct severe congenital ptosis in pediatric patients.

20.
J Cereb Blood Flow Metab ; : 271678X241238033, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459953

RESUMO

The effectiveness and safety of human urinary kallidinogenase (HUK) in acute ischemic stroke (AIS) patients undergoing endovascular therapy (EVT) due to large vessel occlusion (LVO) was unclear. A pooled analysis was performed using individual data from the DEVT and RESCUE BT trials. Patients were divided into two groups based on HUK treatment. The primary outcome was the 90-day modified Rankin Scale (mRS) score. Safety outcomes included 90-day mortality and symptomatic intracranial hemorrhage (sICH) within 48 hours. A total of 1174 patients were included in the study. Of these, 150 (12.8%) patients received HUK. The adjusted common odds ratio (OR) of the mRS score was 1.458 (95% confidence interval [CI] = 1.072-1.983; p = 0.016) favoring HUK. The incidence of sICH (2.0% vs. 8.6%; adjusted OR: 0.198; 95% CI: 0.061-0.638; p = 0.007) and mortality (11.3% vs.18.5%; adjusted OR: 0.496; 95% CI: 0.286-0.862; p = 0.013) was lower in HUK group than non-HUK group. This association was consistent with propensity score-matching and the inverse probability of treatment weighting analysis. In conclusion, HUK was safe and associated with a preferable prognosis in AIS patients due to LVO in the anterior circulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...